Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Front Immunol ; 14: 1130539, 2023.
Article in English | MEDLINE | ID: covidwho-20241121

ABSTRACT

The highly transmissible Omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in late 2021. Initial Omicron waves were primarily made up of sub-lineages BA.1 and/or BA.2, BA.4, and BA.5 subsequently became dominant in mid-2022, and several descendants of these sub-lineages have since emerged. Omicron infections have generally caused less severe disease on average than those caused by earlier variants of concern in healthy adult populations, at least, in part, due to increased population immunity. Nevertheless, healthcare systems in many countries, particularly those with low population immunity, have been overwhelmed by unprecedented surges in disease prevalence during Omicron waves. Pediatric admissions were also higher during Omicron waves compared with waves of previous variants of concern. All Omicron sub-lineages exhibit partial escape from wild-type (Wuhan-Hu 1) spike-based vaccine-elicited neutralizing antibodies, with sub-lineages with more enhanced immuno-evasive properties emerging over time. Evaluating vaccine effectiveness (VE) against Omicron sub-lineages has become challenging against a complex background of varying vaccine coverage, vaccine platforms, prior infection rates, and hybrid immunity. Original messenger RNA vaccine booster doses substantially improved VE against BA.1 or BA.2 symptomatic disease. However, protection against symptomatic disease waned, with reductions detected from 2 months after booster administration. While original vaccine-elicited CD8+ and CD4+ T-cell responses cross-recognize Omicron sub-lineages, thereby retaining protection against severe outcomes, variant-adapted vaccines are required to expand the breadth of B-cell responses and improve durability of protection. Variant-adapted vaccines were rolled out in late 2022 to increase overall protection against symptomatic and severe infections caused by Omicron sub-lineages and antigenically aligned variants with enhanced immune escape mechanisms.


Subject(s)
COVID-19 , Vaccines , Adult , Humans , Child , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , Vaccine Efficacy , Cost of Illness
2.
Br J Haematol ; 2023 Jun 12.
Article in English | MEDLINE | ID: covidwho-20238867

ABSTRACT

Limited data exist on COVID-19 vaccination efficacy in patients with acute myeloid leukemia and myelodysplasia with excess blasts (AML/MDS-EB2). We report results from a prospective study, PACE (Patients with AML and COVID-19 Epidemiology). 93 patients provided samples post-vaccine 2 or 3 (PV2, PV3). Antibodies against SARS-COV-2 spike antigen were detectable in all samples. Neutralization of the omicron variant was poorer than ancestral variants but improved PV3. In contrast, adequate T-cell reactivity to SARS-COV-2 spike protein was seen in only 16/47 (34%) patients PV2 and 23/52 (44%) PV3. Using regression models, disease response (not in CR/Cri), and increasing age predicted poor T cell response.

3.
Res Involv Engagem ; 9(1): 34, 2023 May 22.
Article in English | MEDLINE | ID: covidwho-2321680

ABSTRACT

BACKGROUND: Patient and Public Involvement (PPI) in clinical trial research is recognised as relevant but the active involvement of patients and the public in basic science or laboratory-based research is seen as more challenging and not often reported. PPI within the UK Coronavirus Immunology Consortium (UK-CIC), a translational research project aimed at tackling some of the key questions about the immune system's response to SARS-CoV-2, is an example of overcoming negative perceptions and obstacles. Given the widespread impact of COVID-19, it was important to consider the impact of UK-CIC research on patients and the public throughout, and the PPI panel were an integral part of the consortium. FINDINGS: Building in funding for a PPI panel to value involvement and ensuring effective expert administrative support and management of PPI were crucial to success. Facilitating relationships and quality interactions between public contributors and researchers required time and commitment to the project from all parties. Through creating a platform and open space to explore diverse views and a wide range of perspectives, PPI was able to influence researchers' ways of thinking about their research and impact future research questions about COVID-19 immunology. Moreover, there was long-term impact from the involvement of the PPI panel in COVID-19 research and their value was reflected in invitations to contribute to additional immunology projects. CONCLUSION: The ability to conduct meaningful PPI with basic immunology research has been shown possible through the UK-CIC in the context of the fast-moving COVID-19 pandemic. The UK-CIC project has laid the foundations for PPI in immunology and this should now be built upon for the advantage of future basic scientific research; PPI can impact greatly on laboratory-based research when given the opportunity to do so.

4.
EClinicalMedicine ; 58: 101926, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2299638

ABSTRACT

Background: Few studies have compared SARS-CoV-2 vaccine immunogenicity by ethnic group. We sought to establish whether cellular and humoral immune responses to SARS-CoV-2 vaccination differ according to ethnicity in UK Healthcare workers (HCWs). Methods: In this cross-sectional analysis, we used baseline data from two immunological cohort studies conducted in HCWs in Leicester, UK. Blood samples were collected between March 3, and September 16, 2021. We excluded HCW who had not received two doses of SARS-CoV-2 vaccine at the time of sampling and those who had serological evidence of previous SARS-CoV-2 infection. Outcome measures were SARS-CoV-2 spike-specific total antibody titre, neutralising antibody titre and ELISpot count. We compared our outcome measures by ethnic group using univariable (t tests and rank-sum tests depending on distribution) and multivariable (linear regression for antibody titres and negative binomial regression for ELISpot counts) tests. Multivariable analyses were adjusted for age, sex, vaccine type, length of interval between vaccine doses and time between vaccine administration and sample collection and expressed as adjusted geometric mean ratios (aGMRs) or adjusted incidence rate ratios (aIRRs). To assess differences in the early immune response to vaccination we also conducted analyses in a subcohort who provided samples between 14 and 50 days after their second dose of vaccine. Findings: The total number of HCWs in each analysis were 401 for anti-spike antibody titres, 345 for neutralising antibody titres and 191 for ELISpot. Overall, 25.4% (19.7% South Asian and 5.7% Black/Mixed/Other) were from ethnic minority groups. In analyses including the whole cohort, neutralising antibody titres were higher in South Asian HCWs than White HCWs (aGMR 1.47, 95% CI [1.06-2.06], P = 0.02) as were T cell responses to SARS-CoV-2 S1 peptides (aIRR 1.75, 95% CI [1.05-2.89], P = 0.03). In a subcohort sampled between 14 and 50 days after second vaccine dose, SARS-CoV-2 spike-specific antibody and neutralising antibody geometric mean titre (GMT) was higher in South Asian HCWs compared to White HCWs (9616 binding antibody units (BAU)/ml, 95% CI [7178-12,852] vs 5888 BAU/ml [5023-6902], P = 0.008 and 2851 95% CI [1811-4487] vs 1199 [984-1462], P < 0.001 respectively), increments which persisted after adjustment (aGMR 1.26, 95% CI [1.01-1.58], P = 0.04 and aGMR 2.01, 95% CI [1.34-3.01], P = 0.001). SARS-CoV-2 ELISpot responses to S1 and whole spike peptides (S1 + S2 response) were higher in HCWs from South Asian ethnic groups than those from White groups (S1: aIRR 2.33, 95% CI [1.09-4.94], P = 0.03; spike: aIRR, 2.04, 95% CI [1.02-4.08]). Interpretation: This study provides evidence that, in an infection naïve cohort, humoral and cellular immune responses to SARS-CoV-2 vaccination are stronger in South Asian HCWs than White HCWs. These differences are most clearly seen in the early period following vaccination. Further research is required to understand the underlying mechanisms, whether differences persist with further exposure to vaccine or virus, and the potential impact on vaccine effectiveness. Funding: DIRECT and BELIEVE have received funding from UK Research and Innovation (UKRI) through the COVID-19 National Core Studies Immunity (NCSi) programme (MC_PC_20060).

5.
Nat Immunol ; 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2284754

ABSTRACT

CD4+ T cells are essential for protection against viruses, including SARS-CoV-2. The sensitivity of CD4+ T cells to mutations in SARS-CoV-2 variants of concern (VOCs) is poorly understood. Here, we isolated 159 SARS-CoV-2-specific CD4+ T cell clones from healthcare workers previously infected with wild-type SARS-CoV-2 (D614G) and defined 21 epitopes in spike, membrane and nucleoprotein. Lack of CD4+ T cell cross-reactivity between SARS-CoV-2 and endemic beta-coronaviruses suggested these responses arose from naïve rather than pre-existing cross-reactive coronavirus-specific T cells. Of the 17 epitopes located in the spike protein, 10 were mutated in VOCs and CD4+ T cell clone recognition of 7 of them was impaired, including 3 of the 4 epitopes mutated in omicron. Our results indicated that broad targeting of epitopes by CD4+ T cells likely limits evasion by current VOCs. However, continued genomic surveillance is vital to identify new mutations able to evade CD4+ T cell immunity.

6.
JAMA Pediatr ; 2022 Oct 24.
Article in English | MEDLINE | ID: covidwho-2240364

ABSTRACT

This cohort study investigates the risk of SARS-CoV-2 reinfection among young children with and without spike-specific T-cell responses.

7.
Nat Aging ; 3(1): 93-104, 2023 01.
Article in English | MEDLINE | ID: covidwho-2236455

ABSTRACT

Third-dose coronavirus disease 2019 vaccines are being deployed widely but their efficacy has not been assessed adequately in vulnerable older people who exhibit suboptimal responses after primary vaccination series. This observational study, which was carried out by the VIVALDI study based in England, looked at spike-specific immune responses in 341 staff and residents in long-term care facilities who received an mRNA vaccine following dual primary series vaccination with BNT162b2 or ChAdOx1. Third-dose vaccination strongly increased antibody responses with preferential relative enhancement in older people and was required to elicit neutralization of Omicron. Cellular immune responses were also enhanced with strong cross-reactive recognition of Omicron. However, antibody titers fell 21-78% within 100 d after vaccine and 27% of participants developed a breakthrough Omicron infection. These findings reveal strong immunogenicity of a third vaccine in one of the most vulnerable population groups and endorse an approach for widespread delivery across this population. Ongoing assessment will be required to determine the stability of immune protection.


Subject(s)
COVID-19 , Vaccines , Humans , Aged , BNT162 Vaccine , COVID-19/prevention & control , Antibodies , COVID-19 Vaccines , Breakthrough Infections
8.
Open Forum Infect Dis ; 10(1): ofac694, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2222683

ABSTRACT

Background: Successive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have caused severe disease in long-term care facility (LTCF) residents. Primary vaccination provides strong short-term protection, but data are limited on duration of protection following booster vaccines, particularly against the Omicron variant. We investigated the effectiveness of booster vaccination against infections, hospitalizations, and deaths among LTCF residents and staff in England. Methods: We included residents and staff of LTCFs within the VIVALDI study (ISRCTN 14447421) who underwent routine, asymptomatic testing (December 12, 2021-March 31, 2022). Cox regression was used to estimate relative hazards of SARS-CoV-2 infection, and associated hospitalization and death at 0-13, 14-48, 49-83, 84-111, 112-139, and 140+ days after dose 3 of SARS-CoV-2 vaccination compared with 2 doses (after 84+ days), stratified by previous SARS-CoV-2 infection and adjusting for age, sex, LTCF capacity, and local SARS-CoV-2 incidence. Results: A total of 14 175 residents and 19 793 staff were included. In residents without prior SARS-CoV-2 infection, infection risk was reduced 0-111 days after the first booster, but no protection was apparent after 112 days. Additional protection following booster vaccination waned but was still present at 140+ days for COVID-associated hospitalization (adjusted hazard ratio [aHR], 0.20; 95% CI, 0.06-0.63) and death (aHR, 0.50; 95% CI, 0.20-1.27). Most residents (64.4%) had received primary course vaccine of AstraZeneca, but this did not impact pre- or postbooster risk. Staff showed a similar pattern of waning booster effectiveness against infection, with few hospitalizations and no deaths. Conclusions: Our findings suggest that booster vaccination provided sustained protection against severe outcomes following infection with the Omicron variant, but no protection against infection from 4 months onwards. Ongoing surveillance for SARS-CoV-2 in LTCFs is crucial.

9.
Nat Aging ; 2(6): 536-547, 2022 06.
Article in English | MEDLINE | ID: covidwho-2186114

ABSTRACT

We studied humoral and cellular immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 152 long-term care facility staff and 124 residents over a prospective 4-month period shortly after the first wave of infection in England. We show that residents of long-term care facilities developed high and stable levels of antibodies against spike protein and receptor-binding domain. Nucleocapsid-specific responses were also elevated but waned over time. Antibodies showed stable and equivalent levels of functional inhibition against spike-angiotensin-converting enzyme 2 binding in all age groups with comparable activity against viral variants of concern. SARS-CoV-2 seropositive donors showed high levels of antibodies to other beta-coronaviruses but serostatus did not impact humoral immunity to influenza or other respiratory syncytial viruses. SARS-CoV-2-specific cellular responses were similar across all ages but virus-specific populations showed elevated levels of activation in older donors. Thus, survivors of SARS-CoV-2 infection show a robust and stable immunity against the virus that does not negatively impact responses to other seasonal viruses.


Subject(s)
COVID-19 , Influenza Vaccines , Humans , Aged , SARS-CoV-2/genetics , Long-Term Care , Prospective Studies , Nursing Homes , Antibodies , Immunity, Cellular
10.
Cell Rep Med ; 3(9): 100739, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2004612

ABSTRACT

Age is the strongest determinant of COVID-19 mortality, and over 2 billion people have received primary series vaccination with BNT162b2 (mRNA) or ChAdOx1 (adenoviral vector). However, the profile of sustained vaccine immunogenicity in older people is unknown. Here, we determine spike-specific humoral and cellular immunity to 8 months following BNT162b2 or ChAdOx1 in 245 people aged 80-98 years. Vaccines are strongly immunogenic, with antibodies retained in every donor, while titers fall to 23%-26% from peak. Peak immunity develops rapidly with standard interval BNT162b2, although antibody titers are enhanced 3.7-fold with extended interval. Neutralization of ancestral variants is superior following BNT162b2, while neutralization of Omicron is broadly negative. Conversely, cellular responses are stronger following ChAdOx1 and are retained to 33%-60% of peak with all vaccines. BNT162b2 and ChAdOx1 elicit strong, but differential, sustained immunogenicity in older people. These data provide a baseline to assess optimal booster regimen in this vulnerable age group.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunogenicity, Vaccine , RNA, Messenger
11.
Lancet Healthy Longev ; 3(7): e470-e480, 2022 07.
Article in English | MEDLINE | ID: covidwho-1915225

ABSTRACT

Background: Residents and staff in long-term care facilities have been prioritised for vaccination against SARS-CoV-2, but data on potential waning of vaccine effectiveness and the effect of booster doses in this vulnerable population are scarce. We aimed to evaluate effectiveness of one, two, and three vaccine doses against infection and severe clinical outcomes in staff and residents of long-term care facilities in England over the first year following vaccine roll-out. Methods: The VIVALDI study is a prospective cohort study done in 331 long-term care facilities in England. Residents aged 65 years or older and staff aged 18 years or older were eligible for participation. Participants had routine PCR testing throughout the study period between Dec 8, 2020, and Dec 11, 2021. We retrieved all PCR results and cycle threshold values for PCR-positive samples from routine testing in long-term care facilities, and positive PCR results from clinical testing in hospitals through the UK's COVID-19 Datastore. PCR results were linked to participants using pseudo-identifiers based on individuals' unique UK National Health Service (NHS) numbers, which were also used to retrieve vaccination records from the National Immunisation Management Service, hospitalisation records from NHS England, and deaths data from the Office for National Statistics through the COVID-19 Datastore. In a Cox proportional hazards regression, we estimated vaccine effectiveness against SARS-CoV-2 infection, COVID-19-related hospitalisation, and COVID-19-related death after one, two, and three vaccine doses, separately by previous SARS-CoV-2 exposure. This study is registered with the ISRCTN Registry, ISRCTN 14447421. Findings: 80 186 residents and staff of long-term care facilities had records available for the study period, of whom 15 518 eligible residents and 19 515 eligible staff were included in the analysis. For residents without evidence of previous SARS-CoV-2 exposure, vaccine effectiveness decreased from 61·7% (95% CI 35·1 to 77·4) to 22·0% (-14·9 to 47·0) against infection; from 89·0% (70·6 to 95·9) to 56·3% (30·1 to 72·6) against hospitalisation; and from 96·4% (84·3 to 99·2) to 64·4% (36·1 to 80·1) against death, when comparing 14-83 days after dose two and 84 days or more after dose two. For staff without evidence of previous exposure, vaccine effectiveness against infection decreased slightly from 57·9% (43·1 to 68·9) at 14-83 days after dose two to 42·1% (29·9 to 52·2) at 84 days or more after dose two. There were no hospitalisations or deaths among unexposed staff at 14-83 days, but seven hospitalisations (vaccine effectiveness 91·0% [95% CI 74·3 to 96·8]) and one death were observed at 84 days or more after dose two. High vaccine effectiveness was restored following a third vaccine dose, with vaccine effectiveness in unexposed residents of 72·7% (55·8 to 83·1) against infection, 90·1% (80·6 to 95·0) against hospitalisation, and 97·5% (88·1 to 99·5) against death; and vaccine effectiveness in unexposed staff of 78·2% (70·0 to 84·1) against infection and 95·8% (49·9 to 99·6) against hospitalisation. There were no COVID-19-related deaths among unexposed staff after the third vaccine dose. Interpretation: Our findings showed substantial waning of SARS-CoV-2 vaccine effectiveness against all outcomes in residents of long-term care facilities from 12 weeks after a primary course of ChAdOx1-S or mRNA vaccines. Boosters restored protection, and maximised immunity across all outcomes. These findings show the importance of boosting and the need for ongoing surveillance in this vulnerable cohort. Funding: UK Government Department of Health and Social Care.


Subject(s)
COVID-19 , COVID-19 Vaccines , Humans , Long-Term Care , Prospective Studies , SARS-CoV-2 , State Medicine , Vaccine Efficacy
12.
Lancet Healthy Longev ; 3(7): e461-e469, 2022 07.
Article in English | MEDLINE | ID: covidwho-1915222

ABSTRACT

Background: Older age and frailty are risk factors for poor clinical outcomes following SARS-CoV-2 infection. As such, COVID-19 vaccination has been prioritised for individuals with these factors, but there is concern that immune responses might be impaired due to age-related immune dysregulation and comorbidity. We aimed to study humoral and cellular responses to COVID-19 vaccines in residents of long-term care facilities (LTCFs). Methods: In this observational cohort study, we assessed antibody and cellular immune responses following COVID-19 vaccination in members of staff and residents at 74 LTCFs across the UK. Staff and residents were eligible for inclusion if it was possible to link them to a pseudo-identifier in the COVID-19 datastore, if they had received two vaccine doses, and if they had given a blood sample 6 days after vaccination at the earliest. There were no comorbidity exclusion criteria. Participants were stratified by age (<65 years or ≥65 years) and infection status (previous SARS-CoV-2 infection [infection-primed group] or SARS-CoV-2 naive [infection-naive group]). Anticoagulated edetic acid (EDTA) blood samples were assessed and humoral and cellular responses were quantified. Findings: Between Dec 11, 2020, and June 27, 2021, blood samples were taken from 220 people younger than 65 years (median age 51 years [IQR 39-61]; 103 [47%] had previously had a SARS-CoV-2 infection) and 268 people aged 65 years or older of LTCFs (median age 87 years [80-92]; 144 [43%] had a previous SARS-CoV-2 infection). Samples were taken a median of 82 days (IQR 72-100) after the second vaccination. Antibody responses following dual vaccination were strong and equivalent between participants younger then 65 years and those aged 65 years and older in the infection-primed group (median 125 285 Au/mL [1128 BAU/mL] for <65 year olds vs 157 979 Au/mL [1423 BAU/mL] for ≥65 year olds; p=0·47). The antibody response was reduced by 2·4-times (467 BAU/mL; p≤0·0001) in infection-naive people younger than 65 years and 8·1-times (174 BAU/mL; p≤0·0001) in infection-naive residents compared with their infection-primed counterparts. Antibody response was 2·6-times lower in infection-naive residents than in infection-naive people younger than 65 years (p=0·0006). Impaired neutralisation of delta (1.617.2) variant spike binding was also apparent in infection-naive people younger than 65 years and in those aged 65 years and older. Spike-specific T-cell responses were also significantly enhanced in the infection-primed group. Infection-naive people aged 65 years and older (203 SFU per million [IQR 89-374]) had a 52% lower T-cell response compared with infection-naive people younger than 65 years (85 SFU per million [30-206]; p≤0·0001). Post-vaccine spike-specific CD4 T-cell responses displayed single or dual production of IFN-γ and IL-2 were similar across infection status groups, whereas the infection-primed group had an extended functional profile with TNFα and CXCL10 production. Interpretation: These data reveal suboptimal post-vaccine immune responses within infection-naive residents of LTCFs, and they suggest the need for optimisation of immune protection through the use of booster vaccination. Funding: UK Government Department of Health and Social Care.


Subject(s)
COVID-19 , Vaccines , Aged, 80 and over , Antibodies, Viral , COVID-19 Vaccines , Humans , Immunity, Cellular , Long-Term Care , Middle Aged , SARS-CoV-2 , Vaccination
13.
Front Immunol ; 13: 882515, 2022.
Article in English | MEDLINE | ID: covidwho-1903016

ABSTRACT

Children and adolescents generally experience mild COVID-19. However, those with underlying physical health conditions are at a significantly increased risk of severe disease. Here, we present a comprehensive analysis of antibody and cellular responses in adolescents with severe neuro-disabilities who received COVID-19 vaccination with either ChAdOx1 (n=6) or an mRNA vaccine (mRNA-1273, n=8, BNT162b2, n=1). Strong immune responses were observed after vaccination and antibody levels and neutralisation titres were both higher after two doses. Both measures were also higher after mRNA vaccination and were further enhanced by prior natural infection where one vaccine dose was sufficient to generate peak antibody response. Robust T-cell responses were generated after dual vaccination and were also higher following mRNA vaccination. Early T-cells were characterised by a dominant effector-memory CD4+ T-cell population with a type-1 cytokine signature with additional production of IL-10. Antibody levels were well-maintained for at least 3 months after vaccination and 3 of 4 donors showed measurable neutralisation titres against the Omicron variant. T-cell responses also remained robust, with generation of a central/stem cell memory pool and showed strong reactivity against Omicron spike. These data demonstrate that COVID-19 vaccines display strong immunogenicity in adolescents and that dual vaccination, or single vaccination following prior infection, generate higher immune responses than seen after natural infection and develop activity against Omicron. Initial evidence suggests that mRNA vaccination elicits stronger immune responses than adenoviral delivery, although the latter is also higher than seen in adult populations. COVID-19 vaccines are therefore highly immunogenic in high-risk adolescents and dual vaccination might be able to provide relative protection against the Omicron variant that is currently globally dominant.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Adolescent , Adult , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Humans , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
14.
Sci Rep ; 12(1): 10484, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-1900654

ABSTRACT

Neutrophilia and an elevated neutrophil:lymphocyte ratio are both characteristic features of severe COVID-19 infection. However, functional neutrophil responses have been poorly investigated in this setting. We utilised a novel PMA-based stimulation assay to determine neutrophil-derived reactive oxygen species (ROS) generation in patients with severe COVID-19 infection, non-COVID related sepsis and healthy study participants. ROS production was markedly elevated in COVID-19 patients with median values ninefold higher than in healthy controls and was particularly high in patients on mechanical ventilation. ROS generation correlated strongly with neutrophil count and elevated levels were also seen in patients with non-COVID related sepsis. Relative values, adjusted for neutrophil count, were high in both groups but extreme low or high values were seen in two patients who died shortly after testing, potentially indicating a predictive value for neutrophil function. Our results show that the high levels of neutrophils observed in patients with COVID-19 and sepsis exhibit functional capacity for ROS generation. This may contribute to the clinical features of acute disease and represents a potential novel target for therapeutic intervention.


Subject(s)
COVID-19 , Sepsis , Humans , Leukocyte Count , Neutrophils , Reactive Oxygen Species
16.
J Infect Dis ; 226(11): 1877-1881, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-1883018

ABSTRACT

General population studies have shown strong humoral response following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination with subsequent waning of anti-spike antibody levels. Vaccine-induced immune responses are often attenuated in frail and older populations, but published data are scarce. We measured SARS-CoV-2 anti-spike antibody levels in long-term care facility residents and staff following a second vaccination dose with Oxford-AstraZeneca or Pfizer-BioNTech. Vaccination elicited robust antibody responses in older residents, suggesting comparable levels of vaccine-induced immunity to that in the general population. Antibody levels are higher after Pfizer-BioNTech vaccination but fall more rapidly compared to Oxford-AstraZeneca recipients and are enhanced by prior infection in both groups.


Subject(s)
COVID-19 , Vaccines , Humans , Aged , SARS-CoV-2 , ChAdOx1 nCoV-19 , BNT162 Vaccine , Long-Term Care , COVID-19/prevention & control , Antibodies, Viral , England
17.
Vaccine ; 40(32): 4348-4360, 2022 07 30.
Article in English | MEDLINE | ID: covidwho-1867878

ABSTRACT

Several population groups display an increased risk of severe disease and mortality following SARS-CoV-2 infection. These include those who are immunocompromised (IC), have a cancer diagnosis, human immunodeficiency virus (HIV) infection or chronic inflammatory disease including autoimmune disease, primary immunodeficiencies, and those with kidney or liver disease. As such, improved understanding of the course of COVID-19 disease, as well as the efficacy, safety, and benefit-risk profiles of COVID-19 vaccines in these vulnerable groups is paramount in order to inform health policy makers and identify evidence-based vaccination strategies. In this review, we seek to summarize current data, including recommendations by national health authorities, on the impact and benefit-risk profiles of COVID-19 vaccination in these populations. Moving forward, although significant efforts have been made to elucidate and characterize COVID-19 disease course and vaccine responses in these groups, further larger-scale and longer-term evaluation will be instrumental to help further guide management and vaccination strategies, particularly given concerns about waning of vaccine-induced immunity and the recent surge of transmission with SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vulnerable Populations , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Population Groups , SARS-CoV-2 , Vaccination/adverse effects , Vaccines
18.
iScience ; 25(7): 104480, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1867295

ABSTRACT

Clinical outcomes for patients with COVID-19 are heterogeneous and there is interest in defining subgroups for prognostic modeling and development of treatment algorithms. We obtained 28 demographic and laboratory variables in patients admitted to hospital with COVID-19. These comprised a training cohort (n = 6099) and two validation cohorts during the first and second waves of the pandemic (n = 996; n = 1011). Uniform manifold approximation and projection (UMAP) dimension reduction and Gaussian mixture model (GMM) analysis was used to define patient clusters. 29 clusters were defined in the training cohort and associated with markedly different mortality rates, which were predictive within confirmation datasets. Deconvolution of clinical features within clusters identified unexpected relationships between variables. Integration of large datasets using UMAP-assisted clustering can therefore identify patient subgroups with prognostic information and uncovers unexpected interactions between clinical variables. This application of machine learning represents a powerful approach for delineating disease pathogenesis and potential therapeutic interventions.

19.
Lancet Healthy Longev ; 3(5): e347-e355, 2022 05.
Article in English | MEDLINE | ID: covidwho-1821559

ABSTRACT

Background: The SARS-CoV-2 omicron variant (B.1.1.529) is highly transmissible, but disease severity appears to be reduced compared with previous variants such as alpha and delta. We investigated the risk of severe outcomes following infection in residents of long-term care facilities. Methods: We did a prospective cohort study in residents of long-term care facilities in England who were tested regularly for SARS-CoV-2 between Sept 1, 2021, and Feb 1, 2022, and who were participants of the VIVALDI study. Residents were eligible for inclusion if they had a positive PCR or lateral flow device test during the study period, which could be linked to a National Health Service (NHS) number, enabling linkage to hospital admissions and mortality datasets. PCR or lateral flow device test results were linked to national hospital admission and mortality records using the NHS-number-based pseudo-identifier. We compared the risk of hospital admission (within 14 days following a positive SARS-CoV-2 test) or death (within 28 days) in residents who had tested positive for SARS-CoV-2 in the period shortly before omicron emerged (delta-dominant) and in the omicron-dominant period, adjusting for age, sex, primary vaccine course, past infection, and booster vaccination. Variants were confirmed by sequencing or spike-gene status in a subset of samples. Results: 795 233 tests were done in 333 long-term care facilities, of which 159 084 (20·0%) could not be linked to a pseudo-identifier and 138 012 (17·4%) were done in residents. Eight residents had two episodes of infection (>28 days apart) and in these cases the second episode was excluded from the analysis. 2264 residents in 259 long-term care facilities (median age 84·5 years, IQR 77·9-90·0) were diagnosed with SARS-CoV-2, of whom 253 (11·2%) had a previous infection and 1468 (64·8%) had received a booster vaccination. About a third of participants were male. Risk of hospital admissions was markedly lower in the 1864 residents infected in the omicron-period (4·51%, 95% CI 3·65-5·55) than in the 400 residents infected in the pre-omicron period (10·50%, 7·87-13·94), as was risk of death (5·48% [4·52-6·64] vs 10·75% [8·09-14·22]). Adjusted hazard ratios (aHR) also indicated a reduction in hospital admissions (0·64, 95% CI 0·41-1·00; p=0·051) and mortality (aHR 0·68, 0·44-1·04; p=0·076) in the omicron versus the pre-omicron period. Findings were similar in residents with a confirmed variant. Interpretation: Observed reduced severity of the omicron variant compared with previous variants suggests that the wave of omicron infections is unlikely to lead to a major surge in severe disease in long-term care facility populations with high levels of vaccine coverage or natural immunity. Continued surveillance in this vulnerable population is important to protect residents from infection and monitor the public health effect of emerging variants. Funding: UK Department of Health and Social Care.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged, 80 and over , Cohort Studies , Female , Humans , Long-Term Care , Male , Prospective Studies , State Medicine
20.
Proc Natl Acad Sci U S A ; 119(15): e2119893119, 2022 04 12.
Article in English | MEDLINE | ID: covidwho-1778688

ABSTRACT

The emergence of SARS-CoV-2 triggering the COVID-19 pandemic ranks as arguably the greatest medical emergency of the last century. COVID-19 has highlighted health disparities both within and between countries and will leave a lasting impact on global society. Nonetheless, substantial investment in life sciences over recent decades has facilitated a rapid scientific response with innovations in viral characterization, testing, and sequencing. Perhaps most remarkably, this permitted the development of highly effective vaccines, which are being distributed globally at unprecedented speed. In contrast, drug treatments for the established disease have delivered limited benefits so far. Innovative and rapid approaches in the design and execution of large-scale clinical trials and repurposing of existing drugs have saved many lives; however, many more remain at risk. In this review we describe challenges and unmet needs, discuss existing therapeutics, and address future opportunities. Consideration is given to factors that have hindered drug development in order to support planning for the next pandemic challenge and to allow rapid and cost-effective development of new therapeutics with equitable delivery.


Subject(s)
COVID-19 Drug Treatment , Pandemics , COVID-19 Vaccines , Drug Development , Humans , Pandemics/prevention & control , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL